线程池和死锁
1.线程池
1.1 线程池的思想
我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:
如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间,线程也属于宝贵的系统资源。
那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?
在Java中可以通过线程池来达到这样的效果。
1.2 线程池的概念
- 线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。
由于线程池中有很多操作都是与优化资源相关的,我们在这里就不多赘述。我们通过一张图来了解线程池的工作原理:
合理利用线程池能够带来三个好处:
- 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
- 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
- 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
1.3 线程池的使用
Java里面线程池的顶级接口是java.util.concurrent.Executor
,但是严格意义上讲Executor
并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是java.util.concurrent.ExecutorService
。
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在java.util.concurrent.Executors
线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官方建议使用Executors工程类来创建线程池对象。
Executors类中有个创建线程池的方法如下:
public static ExecutorService newFixedThreadPool(int nThreads)
:返回线程池对象。(创建的是有界线程池,也就是池中的线程个数可以指定最大数量)
获取到了一个线程池ExecutorService 对象,那么怎么使用呢,在这里定义了一个使用线程池对象的方法如下:
-
public Future<?> submit(Runnable task)
:获取线程池中的某一个线程对象,并执行Future接口:用来记录线程任务执行完毕后产生的结果。
使用线程池中线程对象的步骤:
- 创建线程池对象。
- 创建Runnable接口子类对象。(task)
- 提交Runnable接口子类对象。(take task)
- 关闭线程池(一般不做)。
Runnable实现类代码:
public class MyRunnable implements Runnable {
@Override
public void run() {
System.out.println("我要一个教练");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("教练来了: " + Thread.currentThread().getName());
System.out.println("教我游泳,教完后,教练回到了游泳池");
}
}
线程池测试类:
public class ThreadPoolDemo {
public static void main(String[] args) {
// 创建线程池对象
ExecutorService service = Executors.newFixedThreadPool(2);//包含2个线程对象
// 创建Runnable实例对象
MyRunnable r = new MyRunnable();
//自己创建线程对象的方式
// Thread t = new Thread(r);
// t.start(); ---> 调用MyRunnable中的run()
// 从线程池中获取线程对象,然后调用MyRunnable中的run()
service.submit(r);
// 再获取个线程对象,调用MyRunnable中的run()
service.submit(r);
service.submit(r);
// 注意:submit方法调用结束后,程序并不终止,是因为线程池控制了线程的关闭。
// 将使用完的线程又归还到了线程池中
// 关闭线程池
//service.shutdown();
}
}
Callable测试代码:
-
<T> Future<T> submit(Callable<T> task)
: 获取线程池中的某一个线程对象,并执行.Future : 表示计算的结果.
-
V get()
: 获取计算完成的结果。
public class ThreadPoolDemo2 {
public static void main(String[] args) throws Exception {
// 创建线程池对象
ExecutorService service = Executors.newFixedThreadPool(2);//包含2个线程对象
// 创建Runnable实例对象
Callable<Double> c = new Callable<Double>() {
@Override
public Double call() throws Exception {
return Math.random();
}
};
// 从线程池中获取线程对象,然后调用Callable中的call()
Future<Double> f1 = service.submit(c);
// Futur 调用get() 获取运算结果
System.out.println(f1.get());
Future<Double> f2 = service.submit(c);
System.out.println(f2.get());
Future<Double> f3 = service.submit(c);
System.out.println(f3.get());
}
}
1.4 线程池的练习
需求: 使用线程池方式执行任务,返回1-n的和
分析: 因为需要返回求和结果,所以使用Callable方式的任务
代码:
public class Demo04 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService pool = Executors.newFixedThreadPool(3);
SumCallable sc = new SumCallable(100);
Future<Integer> fu = pool.submit(sc);
Integer integer = fu.get();
System.out.println("结果: " + integer);
SumCallable sc2 = new SumCallable(200);
Future<Integer> fu2 = pool.submit(sc2);
Integer integer2 = fu2.get();
System.out.println("结果: " + integer2);
pool.shutdown();
}
}
SumCallable.java
public class SumCallable implements Callable<Integer> {
private int n;
public SumCallable(int n) {
this.n = n;
}
@Override
public Integer call() throws Exception {
// 求1-n的和?
int sum = 0;
for (int i = 1; i <= n; i++) {
sum += i;
}
return sum;
}
}
2.死锁
2.1 什么是死锁
在多线程程序中,使用了多把锁,造成线程之间相互等待.程序不往下走了。
2.2 产生死锁的条件
- 有多把锁
- 有多个线程
- 有同步代码块嵌套
2.3 死锁代码
public class Demo05 {
public static void main(String[] args) {
MyRunnable mr = new MyRunnable();
new Thread(mr).start();
new Thread(mr).start();
}
}
class MyRunnable implements Runnable {
Object objA = new Object();
Object objB = new Object();
/*
嵌套1 objA
嵌套1 objB
嵌套2 objB
嵌套1 objA
*/
@Override
public void run() {
synchronized (objA) {
System.out.println("嵌套1 objA");
synchronized (objB) {// t2, objA, 拿不到B锁,等待
System.out.println("嵌套1 objB");
}
}
synchronized (objB) {
System.out.println("嵌套2 objB");
synchronized (objA) {// t1 , objB, 拿不到A锁,等待
System.out.println("嵌套2 objA");
}
}
}
}
注意:我们应该尽量避免死锁