十分钟上手 Pandas
pandas 是一个 Python Data Analysis Library。
安装请参考官网的教程,如果安装了 Anaconda,则不需要安装 pandas 库。
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
产生 Pandas 对象
pandas 中有三种基本结构:
Series- 1D labeled homogeneously-typed array
DataFrame- General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed columns
Panel- General 3D labeled, also size-mutable array
Series
一维 Series 可以用一维列表初始化:
s = pd.Series([1,3,5,np.nan,6,8])
print s
0 1
1 3
2 5
3 NaN
4 6
5 8
dtype: float64
默认情况下,Series 的下标都是数字(可以使用额外参数指定),类型是统一的。
DataFrame
DataFrame 则是个二维结构,这里首先构造一组时间序列,作为我们第一维的下标:
dates = pd.date_range('20130101', periods=6)
print dates
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
然后创建一个 DataFrame 结构:
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
df
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
默认情况下,如果不指定 index 参数和 columns,那么他们的值将用从 0 开始的数字替代。
除了向 DataFrame 中传入二维数组,我们也可以使用字典传入数据:
df2 = pd.DataFrame({'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo' })
df2
| A | B | C | D | E | F | |
|---|---|---|---|---|---|---|
| 0 | 1 | 2013-01-02 | 1 | 3 | test | foo |
| 1 | 1 | 2013-01-02 | 1 | 3 | train | foo |
| 2 | 1 | 2013-01-02 | 1 | 3 | test | foo |
| 3 | 1 | 2013-01-02 | 1 | 3 | train | foo |
字典的每个 key 代表一列,其 value 可以是各种能够转化为 Series 的对象。
与 Series 要求所有的类型都一致不同,DataFrame 值要求每一列数据的格式相同:
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
查看数据
头尾数据
head 和 tail 方法可以分别查看最前面几行和最后面几行的数据(默认为 5):
df.head()
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
最后 3 行:
df.tail(3)
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
下标,列标,数据
下标使用 index 属性查看:
df.index
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
列标使用 columns 属性查看:
df.columns
Index([u'A', u'B', u'C', u'D'], dtype='object')
数据值使用 values 查看:
df.values
array([[-0.60593585, -0.86165752, -1.00192387, 1.52858443],
[-0.16540784, 0.38833783, 1.18718697, 1.81981793],
[ 0.06525454, -1.60807414, -1.2823306 , -0.28606716],
[ 1.28930486, 0.49711531, -0.22535143, 0.04023897],
[ 0.03823179, 0.87505664, -0.0925258 , 0.93443212],
[-2.16345271, -0.01027865, 1.69988608, 1.29165337]])
统计数据
查看简单的统计数据:
df.describe()
| A | B | C | D | |
|---|---|---|---|---|
| count | 6.000000 | 6.000000 | 6.000000 | 6.000000 |
| mean | -0.257001 | -0.119917 | 0.047490 | 0.888110 |
| std | 1.126657 | 0.938705 | 1.182629 | 0.841529 |
| min | -2.163453 | -1.608074 | -1.282331 | -0.286067 |
| 25% | -0.495804 | -0.648813 | -0.807781 | 0.263787 |
| 50% | -0.063588 | 0.189030 | -0.158939 | 1.113043 |
| 75% | 0.058499 | 0.469921 | 0.867259 | 1.469352 |
| max | 1.289305 | 0.875057 | 1.699886 | 1.819818 |
转置
df.T
| 2013-01-01 00:00:00 | 2013-01-02 00:00:00 | 2013-01-03 00:00:00 | 2013-01-04 00:00:00 | 2013-01-05 00:00:00 | 2013-01-06 00:00:00 | |
|---|---|---|---|---|---|---|
| A | -0.605936 | -0.165408 | 0.065255 | 1.289305 | 0.038232 | -2.163453 |
| B | -0.861658 | 0.388338 | -1.608074 | 0.497115 | 0.875057 | -0.010279 |
| C | -1.001924 | 1.187187 | -1.282331 | -0.225351 | -0.092526 | 1.699886 |
| D | 1.528584 | 1.819818 | -0.286067 | 0.040239 | 0.934432 | 1.291653 |
排序
sort_index(axis=0, ascending=True) 方法按照下标大小进行排序,axis=0 表示按第 0 维进行排序。
df.sort_index(ascending=False)
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
df.sort_index(axis=1, ascending=False)
| D | C | B | A | |
|---|---|---|---|---|
| 2013-01-01 | 1.528584 | -1.001924 | -0.861658 | -0.605936 |
| 2013-01-02 | 1.819818 | 1.187187 | 0.388338 | -0.165408 |
| 2013-01-03 | -0.286067 | -1.282331 | -1.608074 | 0.065255 |
| 2013-01-04 | 0.040239 | -0.225351 | 0.497115 | 1.289305 |
| 2013-01-05 | 0.934432 | -0.092526 | 0.875057 | 0.038232 |
| 2013-01-06 | 1.291653 | 1.699886 | -0.010279 | -2.163453 |
sort_values(by, axis=0, ascending=True) 方法按照 by 的值的大小进行排序,例如按照 B 列的大小:
df.sort_values(by="B")
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
索引
虽然 DataFrame 支持 Python/Numpy 的索引语法,但是推荐使用 .at, .iat, .loc, .iloc 和 .ix 方法进行索引。
读取数据
选择单列数据:
df["A"]
2013-01-01 -0.605936
2013-01-02 -0.165408
2013-01-03 0.065255
2013-01-04 1.289305
2013-01-05 0.038232
2013-01-06 -2.163453
Freq: D, Name: A, dtype: float64
也可以用 df.A:
df.A
2013-01-01 -0.605936
2013-01-02 -0.165408
2013-01-03 0.065255
2013-01-04 1.289305
2013-01-05 0.038232
2013-01-06 -2.163453
Freq: D, Name: A, dtype: float64
使用切片读取多行:
df[0:3]
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
index 名字也可以进行切片:
df["20130101":"20130103"]
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
使用 label 索引
loc 可以方便的使用 label 进行索引:
df.loc[dates[0]]
A -0.605936
B -0.861658
C -1.001924
D 1.528584
Name: 2013-01-01 00:00:00, dtype: float64
多列数据:
df.loc[:,['A','B']]
| A | B | |
|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 |
| 2013-01-02 | -0.165408 | 0.388338 |
| 2013-01-03 | 0.065255 | -1.608074 |
| 2013-01-04 | 1.289305 | 0.497115 |
| 2013-01-05 | 0.038232 | 0.875057 |
| 2013-01-06 | -2.163453 | -0.010279 |
选择多行多列:
df.loc['20130102':'20130104',['A','B']]
| A | B | |
|---|---|---|
| 2013-01-02 | -0.165408 | 0.388338 |
| 2013-01-03 | 0.065255 | -1.608074 |
| 2013-01-04 | 1.289305 | 0.497115 |
数据降维:
df.loc['20130102',['A','B']]
A -0.165408
B 0.388338
Name: 2013-01-02 00:00:00, dtype: float64
得到标量值:
df.loc[dates[0],'B']
-0.86165751902832299
不过得到标量值可以用 at,速度更快:
%timeit -n100 df.loc[dates[0],'B']
%timeit -n100 df.at[dates[0],'B']
print df.at[dates[0],'B']
100 loops, best of 3: 329 µs per loop
100 loops, best of 3: 31.1 µs per loop
-0.861657519028
使用位置索引
iloc 使用位置进行索引:
df.iloc[3]
A 1.289305
B 0.497115
C -0.225351
D 0.040239
Name: 2013-01-04 00:00:00, dtype: float64
连续切片:
df.iloc[3:5,0:2]
| A | B | |
|---|---|---|
| 2013-01-04 | 1.289305 | 0.497115 |
| 2013-01-05 | 0.038232 | 0.875057 |
索引不连续的部分:
df.iloc[[1,2,4],[0,2]]
| A | C | |
|---|---|---|
| 2013-01-02 | -0.165408 | 1.187187 |
| 2013-01-03 | 0.065255 | -1.282331 |
| 2013-01-05 | 0.038232 | -0.092526 |
索引整行:
df.iloc[1:3,:]
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
整列:
df.iloc[:, 1:3]
| B | C | |
|---|---|---|
| 2013-01-01 | -0.861658 | -1.001924 |
| 2013-01-02 | 0.388338 | 1.187187 |
| 2013-01-03 | -1.608074 | -1.282331 |
| 2013-01-04 | 0.497115 | -0.225351 |
| 2013-01-05 | 0.875057 | -0.092526 |
| 2013-01-06 | -0.010279 | 1.699886 |
标量值:
df.iloc[1,1]
0.3883378290420279
当然,使用 iat 索引标量值更快:
%timeit -n100 df.iloc[1,1]
%timeit -n100 df.iat[1,1]
df.iat[1,1]
100 loops, best of 3: 236 µs per loop
100 loops, best of 3: 14.5 µs per loop
0.3883378290420279
布尔型索引
所有 A 列大于 0 的行:
df[df.A > 0]
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
只留下所有大于 0 的数值:
df[df > 0]
| A | B | C | D | |
|---|---|---|---|---|
| 2013-01-01 | NaN | NaN | NaN | 1.528584 |
| 2013-01-02 | NaN | 0.388338 | 1.187187 | 1.819818 |
| 2013-01-03 | 0.065255 | NaN | NaN | NaN |
| 2013-01-04 | 1.289305 | 0.497115 | NaN | 0.040239 |
| 2013-01-05 | 0.038232 | 0.875057 | NaN | 0.934432 |
| 2013-01-06 | NaN | NaN | 1.699886 | 1.291653 |
使用 isin 方法做 filter 过滤:
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
df2
| A | B | C | D | E | |
|---|---|---|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 | one |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | one |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | two |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | three |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | four |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | three |
df2[df2['E'].isin(['two','four'])]
| A | B | C | D | E | |
|---|---|---|---|---|---|
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | two |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | four |
设定数据的值
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
s1
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
像字典一样,直接指定 F 列的值为 s1,此时以 df 已有的 index 为标准将二者进行合并,s1 中没有的 index 项设为 NaN,多余的项舍去:
df['F'] = s1
df
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 | NaN |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | 1 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | 2 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | 3 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | 4 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | 5 |
或者使用 at 或 iat 修改单个值:
df.at[dates[0],'A'] = 0
df
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | -0.861658 | -1.001924 | 1.528584 | NaN |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | 1 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | 2 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | 3 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | 4 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | 5 |
df.iat[0, 1] = 0
df
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 1.528584 | NaN |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | 1 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | 2 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | 3 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | 4 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | 5 |
设定一整列:
df.loc[:,'D'] = np.array([5] * len(df))
df
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | NaN |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | 5 | 2 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 5 | 3 |
| 2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 5 | 4 |
| 2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 5 | 5 |
设定满足条件的数值:
df2 = df.copy()
df2[df2 > 0] = -df2
df2
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | 0.000000 | -1.001924 | -5 | NaN |
| 2013-01-02 | -0.165408 | -0.388338 | -1.187187 | -5 | -1 |
| 2013-01-03 | -0.065255 | -1.608074 | -1.282331 | -5 | -2 |
| 2013-01-04 | -1.289305 | -0.497115 | -0.225351 | -5 | -3 |
| 2013-01-05 | -0.038232 | -0.875057 | -0.092526 | -5 | -4 |
| 2013-01-06 | -2.163453 | -0.010279 | -1.699886 | -5 | -5 |
缺失数据
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
| A | B | C | D | F | E | |
|---|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | NaN | 1 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 | 1 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | 5 | 2 | NaN |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 5 | 3 | NaN |
丢弃所有缺失数据的行得到的新数据:
df1.dropna(how='any')
| A | B | C | D | F | E | |
|---|---|---|---|---|---|---|
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 | 1 |
填充缺失数据:
df1.fillna(value=5)
| A | B | C | D | F | E | |
|---|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | 5 | 1 |
| 2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 | 1 |
| 2013-01-03 | 0.065255 | -1.608074 | -1.282331 | 5 | 2 | 5 |
| 2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 5 | 3 | 5 |
检查缺失数据的位置:
pd.isnull(df1)
| A | B | C | D | F | E | |
|---|---|---|---|---|---|---|
| 2013-01-01 | False | False | False | False | True | False |
| 2013-01-02 | False | False | False | False | False | False |
| 2013-01-03 | False | False | False | False | False | True |
| 2013-01-04 | False | False | False | False | False | True |
计算操作
统计信息
每一列的均值:
df.mean()
A -0.156012
B 0.023693
C 0.047490
D 5.000000
F 3.000000
dtype: float64
每一行的均值:
df.mean(1)
2013-01-01 0.999519
2013-01-02 1.482023
2013-01-03 0.834970
2013-01-04 1.912214
2013-01-05 1.964153
2013-01-06 1.905231
Freq: D, dtype: float64
多个对象之间的操作,如果维度不对,pandas 会自动调用 broadcasting 机制:
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
print s
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64
相减 df - s:
df.sub(s, axis='index')
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | NaN | NaN | NaN | NaN | NaN |
| 2013-01-02 | NaN | NaN | NaN | NaN | NaN |
| 2013-01-03 | -0.934745 | -2.608074 | -2.282331 | 4 | 1 |
| 2013-01-04 | -1.710695 | -2.502885 | -3.225351 | 2 | 0 |
| 2013-01-05 | -4.961768 | -4.124943 | -5.092526 | 0 | -1 |
| 2013-01-06 | NaN | NaN | NaN | NaN | NaN |
apply 操作
与 R 中的 apply 操作类似,接收一个函数,默认是对将函数作用到每一列上:
df.apply(np.cumsum)
| A | B | C | D | F | |
|---|---|---|---|---|---|
| 2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | NaN |
| 2013-01-02 | -0.165408 | 0.388338 | 0.185263 | 10 | 1 |
| 2013-01-03 | -0.100153 | -1.219736 | -1.097067 | 15 | 3 |
| 2013-01-04 | 1.189152 | -0.722621 | -1.322419 | 20 | 6 |
| 2013-01-05 | 1.227383 | 0.152436 | -1.414945 | 25 | 10 |
| 2013-01-06 | -0.936069 | 0.142157 | 0.284941 | 30 | 15 |
求每列最大最小值之差:
df.apply(lambda x: x.max() - x.min())
A 3.452758
B 2.483131
C 2.982217
D 0.000000
F 4.000000
dtype: float64
直方图
s = pd.Series(np.random.randint(0, 7, size=10))
print s
0 2
1 5
2 6
3 6
4 6
5 3
6 5
7 0
8 4
9 4
dtype: int64
直方图信息:
print s.value_counts()
6 3
5 2
4 2
3 1
2 1
0 1
dtype: int64
绘制直方图信息:
h = s.hist()

字符串方法
当 Series 或者 DataFrame 的某一列是字符串时,我们可以用 .str 对这个字符串数组进行字符串的基本操作:
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
print s.str.lower()
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
合并
连接
df = pd.DataFrame(np.random.randn(10, 4))
df
| 0 | 1 | 2 | 3 | |
|---|---|---|---|---|
| 0 | -2.346373 | 0.105651 | -0.048027 | 0.010637 |
| 1 | -0.682198 | 0.943043 | 0.147312 | -0.657871 |
| 2 | 0.515766 | -0.768286 | 0.361570 | 1.146278 |
| 3 | -0.607277 | -0.003086 | -1.499001 | 1.165728 |
| 4 | -1.226279 | -0.177246 | -1.379631 | -0.639261 |
| 5 | 0.807364 | -1.855060 | 0.325968 | 1.898831 |
| 6 | 0.438539 | -0.728131 | -0.009924 | 0.398360 |
| 7 | 1.497457 | -1.506314 | -1.557624 | 0.869043 |
| 8 | 0.945985 | -0.519435 | -0.510359 | -1.077751 |
| 9 | 1.597679 | -0.285955 | -1.060736 | 0.608629 |
可以使用 pd.concat 函数将多个 pandas 对象进行连接:
pieces = [df[:2], df[4:5], df[7:]]
pd.concat(pieces)
| 0 | 1 | 2 | 3 | |
|---|---|---|---|---|
| 0 | -2.346373 | 0.105651 | -0.048027 | 0.010637 |
| 1 | -0.682198 | 0.943043 | 0.147312 | -0.657871 |
| 4 | -1.226279 | -0.177246 | -1.379631 | -0.639261 |
| 7 | 1.497457 | -1.506314 | -1.557624 | 0.869043 |
| 8 | 0.945985 | -0.519435 | -0.510359 | -1.077751 |
| 9 | 1.597679 | -0.285955 | -1.060736 | 0.608629 |
数据库中的 Join
merge 可以实现数据库中的 join 操作:
left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
print left
print right
key lval
0 foo 1
1 foo 2
key rval
0 foo 4
1 foo 5
pd.merge(left, right, on='key')
| key | lval | rval | |
|---|---|---|---|
| 0 | foo | 1 | 4 |
| 1 | foo | 1 | 5 |
| 2 | foo | 2 | 4 |
| 3 | foo | 2 | 5 |
append
向 DataFrame 中添加行:
df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | 1.587778 | -0.110297 | 0.602245 | 1.212597 |
| 1 | -0.551109 | 0.337387 | -0.220919 | 0.363332 |
| 2 | 1.207373 | -0.128394 | 0.619937 | -0.612694 |
| 3 | -0.978282 | -1.038170 | 0.048995 | -0.788973 |
| 4 | 0.843893 | -1.079021 | 0.092212 | 0.485422 |
| 5 | -0.056594 | 1.831206 | 1.910864 | -1.331739 |
| 6 | -0.487106 | -1.495367 | 0.853440 | 0.410854 |
| 7 | 1.830852 | -0.014893 | 0.254025 | 0.197422 |
将第三行的值添加到最后:
s = df.iloc[3]
df.append(s, ignore_index=True)
| A | B | C | D | |
|---|---|---|---|---|
| 0 | 1.587778 | -0.110297 | 0.602245 | 1.212597 |
| 1 | -0.551109 | 0.337387 | -0.220919 | 0.363332 |
| 2 | 1.207373 | -0.128394 | 0.619937 | -0.612694 |
| 3 | -0.978282 | -1.038170 | 0.048995 | -0.788973 |
| 4 | 0.843893 | -1.079021 | 0.092212 | 0.485422 |
| 5 | -0.056594 | 1.831206 | 1.910864 | -1.331739 |
| 6 | -0.487106 | -1.495367 | 0.853440 | 0.410854 |
| 7 | 1.830852 | -0.014893 | 0.254025 | 0.197422 |
| 8 | -0.978282 | -1.038170 | 0.048995 | -0.788973 |
Grouping
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C' : np.random.randn(8),
'D' : np.random.randn(8)})
df
| A | B | C | D | |
|---|---|---|---|---|
| 0 | foo | one | 0.773062 | 0.206503 |
| 1 | bar | one | 1.414609 | -0.346719 |
| 2 | foo | two | 0.964174 | 0.706623 |
| 3 | bar | three | 0.182239 | -1.516509 |
| 4 | foo | two | -0.096255 | 0.494177 |
| 5 | bar | two | -0.759471 | -0.389213 |
| 6 | foo | one | -0.257519 | -1.411693 |
| 7 | foo | three | -0.109368 | 0.241862 |
按照 A 的值进行分类:
df.groupby('A').sum()
| C | D | |
|---|---|---|
| A | ||
| bar | 0.837377 | -2.252441 |
| foo | 1.274094 | 0.237472 |
按照 A, B 的值进行分类:
df.groupby(['A', 'B']).sum()
| C | D | ||
|---|---|---|---|
| A | B | ||
| bar | one | 1.414609 | -0.346719 |
| three | 0.182239 | -1.516509 | |
| two | -0.759471 | -0.389213 | |
| foo | one | 0.515543 | -1.205191 |
| three | -0.109368 | 0.241862 | |
| two | 0.867919 | 1.200800 |
改变形状
Stack
产生一个多 index 的 DataFrame:
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two',
'one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df
| A | B | ||
|---|---|---|---|
| first | second | ||
| bar | one | -0.109174 | 0.958551 |
| two | -0.254743 | -0.975924 | |
| baz | one | -0.132039 | -0.119009 |
| two | 0.587063 | -0.819037 | |
| foo | one | -0.754123 | 0.430747 |
| two | -0.426544 | 0.389822 | |
| qux | one | -0.382501 | -0.562910 |
| two | -0.529287 | 0.826337 |
stack 方法将 columns 变成一个新的 index 部分:
df2 = df[:4]
stacked = df2.stack()
stacked
first second
bar one A -0.109174
B 0.958551
two A -0.254743
B -0.975924
baz one A -0.132039
B -0.119009
two A 0.587063
B -0.819037
dtype: float64
可以使用 unstack() 将最后一级 index 放回 column:
stacked.unstack()
| A | B | ||
|---|---|---|---|
| first | second | ||
| bar | one | -0.109174 | 0.958551 |
| two | -0.254743 | -0.975924 | |
| baz | one | -0.132039 | -0.119009 |
| two | 0.587063 | -0.819037 |
也可以指定其他的级别:
stacked.unstack(1)
| second | one | two | |
|---|---|---|---|
| first | |||
| bar | A | -0.109174 | -0.254743 |
| B | 0.958551 | -0.975924 | |
| baz | A | -0.132039 | 0.587063 |
| B | -0.119009 | -0.819037 |
时间序列
金融分析中常用到时间序列数据:
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
ts
2012-03-06 1.096788
2012-03-07 0.029678
2012-03-08 0.511461
2012-03-09 -0.332369
2012-03-10 1.720321
Freq: D, dtype: float64
标准时间表示:
ts_utc = ts.tz_localize('UTC')
ts_utc
2012-03-06 00:00:00+00:00 1.096788
2012-03-07 00:00:00+00:00 0.029678
2012-03-08 00:00:00+00:00 0.511461
2012-03-09 00:00:00+00:00 -0.332369
2012-03-10 00:00:00+00:00 1.720321
Freq: D, dtype: float64
改变时区表示:
ts_utc.tz_convert('US/Eastern')
2012-03-05 19:00:00-05:00 1.096788
2012-03-06 19:00:00-05:00 0.029678
2012-03-07 19:00:00-05:00 0.511461
2012-03-08 19:00:00-05:00 -0.332369
2012-03-09 19:00:00-05:00 1.720321
Freq: D, dtype: float64
Categoricals
df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
df
| id | raw_grade | |
|---|---|---|
| 0 | 1 | a |
| 1 | 2 | b |
| 2 | 3 | b |
| 3 | 4 | a |
| 4 | 5 | a |
| 5 | 6 | e |
可以将 grade 变成类别:
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
将类别的表示转化为有意义的字符:
df["grade"].cat.categories = ["very good", "good", "very bad"]
df["grade"]
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (3, object): [very good, good, very bad]
添加缺失的类别:
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
df["grade"]
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
使用 grade 分组:
df.groupby("grade").size()
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
绘图
使用 ggplot 风格:
plt.style.use('ggplot')
Series 绘图:
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
p = ts.cumsum().plot()

DataFrame 按照 columns 绘图:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=['A', 'B', 'C', 'D'])
df.cumsum().plot()
p = plt.legend(loc="best")

文件读写
csv
写入文件:
df.to_csv('foo.csv')
从文件中读取:
pd.read_csv('foo.csv').head()
| Unnamed: 0 | A | B | C | D | |
|---|---|---|---|---|---|
| 0 | 2000-01-01 | -1.011554 | 1.200283 | -0.310949 | -1.060734 |
| 1 | 2000-01-02 | -1.030894 | 0.660518 | -0.214002 | -0.422014 |
| 2 | 2000-01-03 | -0.488692 | 1.709209 | -0.602208 | 1.115456 |
| 3 | 2000-01-04 | -0.440243 | 0.826692 | 0.321648 | -0.351698 |
| 4 | 2000-01-05 | -0.165684 | 1.297303 | 0.817233 | 0.174767 |
hdf5
写入文件:
df.to_hdf("foo.h5", "df")
读取文件:
pd.read_hdf('foo.h5','df').head()
| A | B | C | D | |
|---|---|---|---|---|
| 2000-01-01 | -1.011554 | 1.200283 | -0.310949 | -1.060734 |
| 2000-01-02 | -1.030894 | 0.660518 | -0.214002 | -0.422014 |
| 2000-01-03 | -0.488692 | 1.709209 | -0.602208 | 1.115456 |
| 2000-01-04 | -0.440243 | 0.826692 | 0.321648 | -0.351698 |
| 2000-01-05 | -0.165684 | 1.297303 | 0.817233 | 0.174767 |
excel
写入文件:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
读取文件:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']).head()
| A | B | C | D | |
|---|---|---|---|---|
| 2000-01-01 | -1.011554 | 1.200283 | -0.310949 | -1.060734 |
| 2000-01-02 | -1.030894 | 0.660518 | -0.214002 | -0.422014 |
| 2000-01-03 | -0.488692 | 1.709209 | -0.602208 | 1.115456 |
| 2000-01-04 | -0.440243 | 0.826692 | 0.321648 | -0.351698 |
| 2000-01-05 | -0.165684 | 1.297303 | 0.817233 | 0.174767 |
清理生成的临时文件:
import glob
import os
for f in glob.glob("foo*"):
os.remove(f)