049、曲线拟合
曲线拟合 导入基础包: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt 多项式拟合 导入线多项式拟合工具: from numpy import polyfit, poly1d 产生数据: x = np.linspace(-5, 5, 100) y = 4 * x + 1.5 noise_y = …
|
|
16
743 字
|
15 分钟
048、概率统计方法
概率统计方法 简介 Python 中常用的统计工具有 Numpy, Pandas, PyMC, StatsModels 等。 Scipy 中的子库 scipy.stats 中包含很多统计上的方法。 导入 numpy 和 matplotlib: %pylab inline Populating the interactive namespace from numpy and matplotlib h…
|
|
19
1231 字
|
22 分钟
047、插值
插值 import numpy as np import matplotlib.pyplot as plt %matplotlib inline 设置 Numpy 浮点数显示格式: np.set_printoptions(precision=2, suppress=True) 从文本中读入数据,数据来自 http://kinetics.nist.gov/janaf/html/C-067.txt ,…
|
|
13
960 字
|
16 分钟
046、SCIentific PYthon 简介
SCIentific PYthon 简介 Ipython 提供了一个很好的解释器界面。 Matplotlib 提供了一个类似 Matlab 的画图工具。 Numpy 提供了 ndarray 对象,可以进行快速的向量化计算。 Scipy 是 Python 中进行科学计算的一个第三方库,以 Numpy 为基础。 Pandas 是处理时间序列数据的第三方库,提供一个类似 R 语言的环境。 StatsMo…
|
|
16
477 字
|
7 分钟
045、从 Matlab 到 Numpy
从 Matlab 到 Numpy Numpy 和 Matlab 比较 Numpy 和 Matlab 有很多相似的地方,但 Numpy 并非 Matlab 的克隆,它们之间存在很多差异,例如: MATLAB® Numpy 基本类型为双精度浮点数组,以二维矩阵为主 基本类型为 ndarray,有特殊的 matrix 类 1-based 索引 0-based 索引 脚本主要用于线性代数计算 可以使用其他…
|
|
15
1487 字
|
9 分钟
044、内存映射
内存映射 Numpy 有对内存映射的支持。 内存映射也是一种处理文件的方法,主要的函数有: memmap frombuffer ndarray constructor 内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而且在对该文件进行操作之前必须首先对文件进行映射。 使用内存映射文件处…
|
|
16
290 字
|
2 分钟
043、记录数组
记录数组 记录数组(record array)与结构数组类似: import numpy as np 质点类型: partical_dtype = np.dtype([('mass', 'float'), ('velocity', 'float')]) 生成记录数组要使用 numpy.rec 里的 fromrecord…
|
|
15
168 字
|
3 分钟
042、结构化数组
结构化数组 假设我们要保存这样的数据: name age wgt 0 dan 1 23.1 1 ann 0 25.1 2 sam 2 8.3 希望定义一个一维数组,每个元素有三个属性 name, age, wgt,此时我们需要使用结构化数组。 import numpy as np 定义数组 a: 0 1 2 3 1.0 2.0 3.0 4.0 a = np.array([1.0,2.0,3.0,4…
|
|
14
820 字
|
14 分钟
041、数组读写
数组读写 从文本中读取数组 import numpy as np 空格(制表符)分割的文本 假设我们有这样的一个空白分割的文件: %%writefile myfile.txt 2.1 2.3 3.2 1.3 3.1 6.1 3.1 4.2 2.3 1.8 Writing myfile.txt 为了生成数组,我们首先将数据转化成一个列表组成的列表,再将这个列表转换为数组: data = [] wit…
|
|
18
1126 字
|
23 分钟
040、数组广播机制
数组广播机制 import numpy as np 正常的加法: a = np.array([[ 0, 0, 0], [10,10,10], [20,20,20], [30,30,30]]) b = np.array([[ 0, 1, 2], [ 0, 1, 2], [ 0, 1, 2], [ 0, 1, 2]]) a + b array([[ 0, 1, 2], [10, 11, 12], [2…
|
|
12
497 字
|
9 分钟