本文最后更新于 260 天前,其中的信息可能已经过时,如有错误请发送邮件到wuxianglongblog@163.com
super() 函数
super(CurrentClassName, instance)
返回该类实例对应的父类对象。
class Leaf(object):
def __init__(self, color="green"):
self.color = color
def fall(self):
print "Splat!"
class MapleLeaf(Leaf):
def change_color(self):
if self.color == "green":
self.color = "red"
def fall(self):
self.change_color()
super(MapleLeaf, self).fall()
这里,我们先改变树叶的颜色,然后再找到这个实例对应的父类,并调用父类的 fall()
方法:
mleaf = MapleLeaf()
print mleaf.color
mleaf.fall()
print mleaf.color
green
Splat!
red
回到我们的森林例子,这里我们将森林 Forest
作为父类,并定义一个子类 BurnableForest
:
import numpy as np
class Forest(object):
""" Forest can grow trees which eventually die."""
def __init__(self, size=(150,150), p_sapling=0.0025):
self.size = size
self.trees = np.zeros(self.size, dtype=bool)
self.p_sapling = p_sapling
def __repr__(self):
my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
return my_repr
def __str__(self):
return self.__class__.__name__
@property
def num_cells(self):
"""Number of cells available for growing trees"""
return np.prod(self.size)
@property
def tree_fraction(self):
"""
Fraction of trees
"""
num_trees = self.trees.sum()
return float(num_trees) / self.num_cells
def _rand_bool(self, p):
"""
Random boolean distributed according to p, less than p will be True
"""
return np.random.uniform(size=self.trees.shape) < p
def grow_trees(self):
"""
Growing trees.
"""
growth_sites = self._rand_bool(self.p_sapling)
self.trees[growth_sites] = True
def advance_one_step(self):
"""
Advance one step
"""
self.grow_trees()
- 将与燃烧相关的属性都被转移到了子类中去。
- 修改两类的构造方法,将闪电概率放到子类的构造方法上,同时在子类的构造方法中,用
super
调用父类的构造方法。 - 修改
advance_one_step()
,父类中只进行生长,在子类中用super
调用父类的advance_one_step()
方法,并添加燃烧的部分。
class BurnableForest(Forest):
"""
Burnable forest support fires
"""
def __init__(self, p_lightning=5.0e-6, **kwargs):
super(BurnableForest, self).__init__(**kwargs)
self.p_lightning = p_lightning
self.fires = np.zeros((self.size), dtype=bool)
def advance_one_step(self):
"""
Advance one step
"""
super(BurnableForest, self).advance_one_step()
self.start_fires()
self.burn_trees()
@property
def fire_fraction(self):
"""
Fraction of fires
"""
num_fires = self.fires.sum()
return float(num_fires) / self.num_cells
def start_fires(self):
"""
Start of fire.
"""
lightning_strikes = (self._rand_bool(self.p_lightning) &
self.trees)
self.fires[lightning_strikes] = True
def burn_trees(self):
"""
Burn trees.
"""
fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
fires[1:-1, 1:-1] = self.fires
north = fires[:-2, 1:-1]
south = fires[2:, 1:-1]
east = fires[1:-1, :-2]
west = fires[1:-1, 2:]
new_fires = (north | south | east | west) & self.trees
self.trees[self.fires] = False
self.fires = new_fires
测试父类:
forest = Forest()
forest.grow_trees()
print forest.tree_fraction
0.00284444444444
测试子类:
burnable_forest = BurnableForest()
调用自己和父类的方法:
burnable_forest.grow_trees()
burnable_forest.start_fires()
burnable_forest.burn_trees()
print burnable_forest.tree_fraction
0.00235555555556
查看变化:
import matplotlib.pyplot as plt
%matplotlib inline
forest = Forest()
forest2 = BurnableForest()
tree_fractions = []
for i in range(2500):
forest.advance_one_step()
forest2.advance_one_step()
tree_fractions.append((forest.tree_fraction, forest2.tree_fraction))
plt.plot(tree_fractions)
plt.show()
__str__
和 __repr__
中 self.__class__
会根据类型不同而不同:
forest
Forest(size=(150, 150))
forest2
BurnableForest(size=(150, 150))
print forest
Forest
print forest2
BurnableForest