本文最后更新于 320 天前,其中的信息可能已经过时,如有错误请发送邮件到wuxianglongblog@163.com
使用 OOP 对森林火灾建模
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
对森林建模
class Forest(object):
def __init__(self, size=(150, 150), p_sapling=0.0025, p_lightning=5.e-6, name=None):
self.size = size
self.trees = np.zeros(self.size, dtype=bool)
self.forest_fires = np.zeros(self.size, dtype=bool)
self.p_sapling = p_sapling
self.p_lightning = p_lightning
if name is not None:
self.name = name
else:
self.name = self.__class__.__name__
@property
def num_cells(self):
return self.size[0] * self.size[1]
@property
def tree_fraction(self):
return self.trees.sum() / float(self.num_cells)
@property
def fire_fraction(self):
return self.forest_fires.sum() / float(self.num_cells)
def advance_one_step(self):
self.grow_trees()
self.start_fires()
self.burn_trees()
def grow_trees(self):
growth_sites = self._rand_bool(self.p_sapling)
self.trees[growth_sites] = True
def start_fires(self):
lightning_strikes = (self._rand_bool(self.p_lightning) &
self.trees)
self.forest_fires[lightning_strikes] = True
def burn_trees(self):
fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
fires[1:-1, 1:-1] = self.forest_fires
north = fires[:-2, 1:-1]
south = fires[2:, 1:-1]
east = fires[1:-1, :-2]
west = fires[1:-1, 2:]
new_fires = (north | south | east | west) & self.trees
self.trees[self.forest_fires] = False
self.forest_fires = new_fires
def _rand_bool(self, p):
return np.random.uniform(size=self.trees.shape) < p
定义一个森林类之后,我们创建一个新的森林类对象:
forest = Forest()
显示当前的状态:
print forest.trees
[[False False False ..., False False False]
[False False False ..., False False False]
[False False False ..., False False False]
...,
[False False False ..., False False False]
[False False False ..., False False False]
[False False False ..., False False False]]
print forest.forest_fires
[[False False False ..., False False False]
[False False False ..., False False False]
[False False False ..., False False False]
...,
[False False False ..., False False False]
[False False False ..., False False False]
[False False False ..., False False False]]
使用 matshow
进行可视化:
plt.matshow(forest.trees, cmap=plt.cm.Greens)
plt.show()
模拟森林生长和火灾的过程
经过一段时间:
forest.advance_one_step()
plt.matshow(forest.trees, cmap=plt.cm.Greens)
plt.show()
循环很长时间:
for i in range(500):
forest.advance_one_step()
plt.matshow(forest.trees, cmap=plt.cm.Greens)
print forest.tree_fraction
0.253111111111
迭代更长时间:
forest = Forest()
tree_fractions = []
for i in range(5000):
forest.advance_one_step()
tree_fractions.append(forest.tree_fraction)
fig = plt.figure()
ax0 = fig.add_subplot(1,2,1)
ax0.matshow(forest.trees, cmap=plt.cm.Greens)
ax1 = fig.add_subplot(1,2,2)
ax1.plot(tree_fractions)
plt.show()